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The $30M B73 Maize Genome 
Sequencing Project 

•  WU Genome Sequencing 
Center (R. Wilson, PI); Arizona 
Genome Institute; Cold Spring 
Harbor Laboratory; Iowa State 
University 

•  Schnable et al., Science, 2009 



Structural Variation (CNV & PAV) 

• In humans SV can be associated with disease (“traits”) 

• In maize: 
• What is overall level of (genic) SV? (high) 
• Does SV contribute to phenotypic diversity? (yes) 

CNV 

PAV 



Array-based Comparative Genome 
Hybridizations (CGH) 

• Nimblegen’s HD2 Array (~2.1M probes) 
• Probes designed using a “frequency masked” 200 bp tile-
path through the draft B73 genome sequence 
• Genotypes: B73, Mo17 (different heterotic groups) 



5 

Introduction to CGH 



Detection of CNV via CGH signal intensity  

Chr. 1 Log2 (M/B) 



Several hundred intact, expressed, phylogenetically 
conserved genes exhibit CNVs and PAVs 

(more on this topic during BGI and Roche Workshops) 



Novel CGH Patterns in RILs 

CGH signals for genes present in both B73 and Mo17, but at 
non-allelic positions (unlinked) 



Segregation of Non-Allelic Gene Copies Generates 
PAVs/CNVs and Novel Phenotypes 
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Segregation of Non-Allelic Gene Copies Generates 
PAVs/CNVs and Novel Phenotypes 
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Changes in gene 
complement among 
RILs.   

Explanation for 
transgressive 
segregation? 

Strong statistical 
support for 
association between 
gene loss and yield 
component traits in 
IBM RILs 



How prevalent is epistatis? 

• Global tests (lots of markers and lots of 
traits) to maximize chances to detecting 
epistasis 

• What data set? 
• How to analyze? 



Summary of eQTL Mapping 

eQTL 
± 5 cM 

Gene Y 

Chr A 

Cis-regulation 

Gene Y 

eQTL 

Chr A Chr B 

Trans-regulation Other 

± 5 cM Gene Y 

Chr A 

14.5% 75% 10.5% 

Identified >4,000 eQTL associations (FDRs 1-10%)  

Swanson-Wagner et al., Science 2009 

Ruth  
Swanson-Wagner 

But based on only 30 IBM RILs 



2nd Data Set 
• Strand-specific oligo-microarray 
• Detects sense and anti-sense transcripts 
• Analysis of twice as many (56) IBM RILs 

identified many eQTL affecting 
accumulation of sense or anti-sense 
transcripts 

• >12,000 “traits”; > 1,000 markers (no 
missing data) 

Yi Jia (贾毅) 



How prevalent is epistatis? 

• Global tests (lots of markers and lots of 
traits) to maximize chances to detecting 
epistasis 

• What data set? 
• How to analyze? 



Challenge 
•  Quadratic increase in problem size in relation to marker number 
•  Linear increase with the number of lines (need for statistical 

power to detect smaller effects)  
•  Developed statistical methodology whose per-test calculation 

involves comparatively small number of arithmetic operations (F-
test applied to a linear contrast of genotype means coupled with 
p-value determination via permutation and corrected for false 
discovery rate) 

•  Even so, initial run time estimate was 1,634 years of computer 
time, based on quick implementations done in R and Python.  

•  Partnership with the NSF-funded iPlant, which made available 
high performance computing (HPC) expertise and machine 
resources at TACC.  

•  Then analyzed the real data with the algorithm 



Hardware Used 

•  Results produced with two NSF 
TeraGrid resources at TACC 

•  Ranger: 
–  62,976 cores of AMD Barcelona 
–  2GB RAM per core 
–  Up to 4,000 cores used for this code 

•  Longhorn 
–  2,048 Intel Nehalem cores 
–  6GB RAM per core 
–  512 GPUs (not used here) 

Ranger 

Longhorn 

Allocations of compute time on both these 
systems are available thru iPlant or TeraGrid for 
researchers in the US or with US-based 
collaborators   



Performance 
•  As compared to the initial estimate of the runtime 

for this problem (1,634 years) the final run time 
was 4.5 hours on 128 processors of a cluster, a 
performance improvement of 3.2 million times! 
–  Port to Fortran:  1,000x improvement. 
–  Code optimization: 25x 
–  On-node and inter-node parallelism: 125x 

•  The good news: 6 weeks of optimization saved a 
millennium.  



The Bad News: No Evidence of 
Epistatis Detected 

• Number of lines (RILs) too small? 
• Data too noisy? (microarray) 
• Statistical test too conservative? 
• Effect sizes are small? No epistasis? 



Steps forward 
•  Simulations: Statistical properties of our test not fully 

understood.  What effect sizes will be detectable as the 
numbers of lines and markers are scaled? (etc) Will 
analyze simulated data that contains known epistatic 
interaction (Scott Chapman and Mark Dieters) 

•  New data sets:  RNA-Seq data (“cleaner”) being 
generated on larger number of RILs (more power) in 
collaboration with the NSF-funded SAM project (Mike 
Scanlon, Gary Muehlbauer, Jianming Yu, Marja 
Timmermans and Diane Janick-Buckner) will be 
analyzed with iPlant pipeline 



Summary 
•  Maize exhibits unprecedented levels of SV (CNV and 

PAVs), affecting several hundred genes 
•  Evidence that SV contributes to the extraordinary 

phenotypic diversity in maize 
•  In collaboration with iPlant an efficient pipeline was 

developed to conduct genome-wide tests for epistasis 
•  Simulations and new datasets are coming… 
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