

Developing Carbon Capturing Crops: Vision, Strategy And Progress

Root Genomics Workshop
Plant and Animal Genome Conference

13 January 2009

Iowa State University

How can plant genomics contribute to mitgating global climate change?

McCarty Glacier, 30 Jul 1909* vs. 11 Aug 2004*
Kenai Fjords National Park, Alaska

The Carbon Cycle (for geneticists)

Schnable lab
Plant Genomics

First Answer: Biofuels

Currently most ethanol is derived from starch, but to meet the U.S. "ethanol mandate" it will be necessary to bring "lignocellulosic ethanol" technology on-line
...>3 Challenges...

NYT, 1/23/07

2nd Challenge: Carbon Debts Associated with Biofuel Production

Land Clearing and the
 Biofuel Carbon Debt

Joseph Fargione, ${ }^{1}$ Jason Hill, ${ }^{2,3}$ David Tilman, ${ }^{2 \star}$ Stephen Polasky, ${ }^{2,3}$ Peter Hawthorne ${ }^{2}$
Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change
Timothy Searchinger, ${ }^{1 *}$ Ralph Heimlich, ${ }^{2}$ R. A. Houghton, ${ }^{3}$ Fengxia Dong, ${ }^{4}$ Amani Elobeid, ${ }^{4}$ Jacinto Fabiosa, ${ }^{4}$ Simla Tokgoz, ${ }^{4}$ Dermot Hayes, ${ }^{4}$ Tun-Hsiang Yu ${ }^{4}$

Science, 29 Feb 2008
Conversion of ag land to biofuel production results in add'I land being brought into production. Doing so incurs a "carbon debt" that can require 30-100 years of biofuel production to offset.

7 April 2008

Time, 7 April 2008

Plant Genomics

Soil Organic Matter (SOM) over Last Century

Soil Organic Matter is a "Good Thing"

-Reduces erosion
-Reduces nitrogen loss

Crop production

Agricultural sustainability

SOM has reached a new equilibrium

Based on:
Reduced tillage
Return of $\sim 50 \%$ of biomass to the soil

What happens if we remove "all" of above-ground biomass for biofuel production?

Leaves, husks, stalks, cobs comprise $\sim 50 \%$ of above-ground biomass

Third Challenge: Response of Soil Organic Matter to Removal of Biomass

Center for Carbon-Capturing Crops

Goal: to produce crops with biomass that is more "resistant" to microbial degradation

-Alter
composition to reduce rate of decay, e.g., increase concentration of compounds that have long half lives in soil.

Plant Genomics

Potential Benefits of Carbon Capturing Crops

- More quickly "repay" carbon debt on newly cultivated biofuel production fields
- Help maintain soil organic matter levels under intensive biomass production systems
- Increase equilibrium amount of soil organic matter under traditional cropping systems
- Improved water quality
- Reduced erosion
- Reduced nitrogen loss
- Help mitigate global climate change by sequestering atmospheric carbon in agricultural soils
- Provide additional income to the farm sector through carbon credits

Deployment Strategies

a) Land close to biorefineries
= Bulk
biomass
production \rightarrow Maintain SOM

```
b) Other crop
land = Grain
production }
Increase SOM
(sequester
carbon; earn
carbon credits)
```


Potential Strategies

- Alter (below-ground) biomass:
- Increase total root mass
- Alter structure of roots to reduce rate of decay
- Cloning root mutants (w/ Frank Hochholdinger)
- Alter composition to reduce rate of decay
- (e.g., increase concentration of compounds that have long half lives in soil; which compounds are long-lived?)

Decomposition of Maize-Derived Carbon

Decomposition of Biomass-Derived Carbon

Using the NAM Population to Elucidate the Genetic Regulation of Cell Wall Composition

Nested Association Mapping (NAM) Population: Genome reshuffling between 25 diverse founder inbreds and the common (B73) inbred parent and the resulting 5,000 immortal genotypes

Yu, J. et al. Genetics 2008;178:539-551
Harvested 2 stalks per RIL
Copyright © 2008 by the Genetics Society of America

Genetic Control of Cell Wall Composition

A "Grassroots" Approach to Carbon Sequestration

QTL mapping for Carbon Capturing Trait

Metabolomic analyses of stover samples from IBM \& NAM RILs ($\mathrm{N}=12,000$)

Which other biomass constituents contribute to carbon sequestration?

Mapped Traits:

2 QTL for [p-coumaric acid]
2 QTL for [ferulic acid] 1 QTL for C/N\%

Which Biomass Constituents Have Longest Half-Lives?

Offset $\mathbf{> 2 0 0 \%}$ of lowa emissions Offset $\mathbf{>} \mathbf{2 0 \%}$ of US emissions

For lowa corn growers, at \$3/MT CO2 = \$30 million / year at $\$ 20 / \mathrm{MT}$ CO2 $=\$ 200$ million $/$ year For US corn growers, at \$3/MT CO2 = \$192 million / year at $\$ 20 / \mathrm{MT} \mathrm{CO2}=\$ 1.3$ billion / year

Iowa corn: 13 million acres per year US corn: 90 million acres per year

Slower decay
Increase SOM by 1 kg m2

Apply what is learned from maize to dedicated biofuel crops...

Photos courtesy of Ted Crosbie
... and to pasture and hay crops, turfgrass, forest crops...

Acknowledgements

Ramesh Nair

Schnable lab
Plant Genomics

Thanks to the Panzea group for sharing the NAM pop'l and to Torbert Rochefort (Univ of IL) and Candy Gardner \& Paul Scott (USDA/ISU) for logistical support

For more details and discussion, please visit Poster 321

www.schnablelab.plantgenomics.edu
Schnable lab
Plant Genomics

