NimbleGen Sequence Capture: A New Technology for the Positional Cloning of QTL from Crops with Complex Genomes

QTL Cloning Workshop Plant and Animal Genome Conference 10 January 2009

Patrick S. Schnäble Center for Plant Genomics IOWA STATE UNIVERSITY

Elucidating the Mechanisms of Heterosis

B73 F1 Mo17 B73 F1 Mo17

SCHNABLE LAB Plant Genomics

Gene Expression Profiling

Yi Jia (贾**毅)**

- Conducted gene expression profiling among three genotypes (9 biological replications)
- Characterized gene action among the ~1,500 genes from cDNA array that exhibited the most statistically significant differences in expression among the three genotypes (FDR ~15.1%)

Ruth Swanson-Wagner

All possible modes of gene action are observed in a global comparison of gene expression in a maize F_1 hybrid and its inbred parents

Ruth A. Swanson-Wagner*^{†‡}, Yi Jia^{†‡§}, Rhonda DeCook[¶], Lisa A. Borsuk^{†|}, Dan Nettleton^{¶|**}, and Patrick S. Schnable*^{†§||**††‡‡}

*Interdepartmental Genetics Graduate Program, [†]Departments of Genetics, Development and Cell Biology, [¶]Statistics, and ^{††}Agronomy, [§]Interdepartmental Plant Physiology Graduate Program, [§]Interdepartmental Bioinformatics and Computational Biology Graduate Program, and **Center for Plant Genomics, Iowa State University, Ames, IA 50011

eQTL mapping: Determine the genetic mechanisms that regulate gene expression in hybrids versus inbreds

Most eQTL experiments compare expression across RILs (two homozygous genotypes: e.g., B73 vs Mo17 allele)
We additionally compared expression in backcrosses of RILs to B73 and Mo17
Permits comparisons of heterozygous and homozygous genotypes

Experimental Design

- 30 RILS from IBM population
- 3 genotypes: B73xRIL, Mo17xRIL, RIL
- 4 biological replications (14 DAP seedlings; highly controlled environment)
- Hybridize to SAM1.1 cDNA array (14,401 cDNAs): 360 arrays

Identification of *Cis* and *Trans* eQTLs

Group	No. Significant eQTLs	FDR (%)	No. Mapped Genes	No. Cis	No. Trans	No. Other	No. Not Mapped	% Cis (of mapped)	% Trans (of mapped)	% Other (of mapped)
B73xRIL	530	9.8	163	11	140	12	367	7	86	7
RIL	711	1.3	242	79	145	18	469	33	60	7
Mo17xRIL	536	5.1	169	21	131	17	367	12	78	10
Merged (Non-redundant)	1531		486	81	362	43	1,045	17	74	9

Fine-Mapping of trans-eQTL

Trans-eQTL (2-5 cM resolution) have been Mendelized; positional cloning is underway. Screened 10,000 F_1BC_4 w/ PCR-based markers that flank eQTL interval.

Array-based Comparative Genome Hybridizations (CGH)

Nimblegen's HD2 Array (~2.1M probes)
Probes designed using a "frequency masked" 200 bp tilepath through the *draft* B73 genome sequence
Genotypes: B73, Mo17, and two IBM (B73 x Mo17) RILs

SID	СуЗ	Cy5
1	B73	Mo17
2	Mo17	B73
3	Mo17	B73
4	Mo17	B73
5	RIL1 (M0023)	B73
6	RIL2 (M0022)	B73
7	Mo17	RIL1 (M0023)
8	Mo17	RIL2 (M0022)
9	RIL1 (M0023)	B73

Genome-wide analysis of log ratios of signal strengths between Mo17 and B73 as a function of the degree of probe sequence conservation. Log ratios of probe signals are plotted relative to their physical positions on the 10 maize chromosomes.

CGH-Based High-Resolution Genotyping of IBM RILs

RIL and B73 DNA hybridized to Nimblegen's HD2 array. Log ratios of signals from ~34k genic probes with B-M log ratios >2 are plotted relative to their physical positions. CGH probes mapping to odd and even chromosomes are indicated in green and red, respectively. Note high level of consistency with PCR-based genotyping results (black spots*).

Region-Specific SNP Discovery Using Nimblegen's Sequence Capture*

*Hodges et al. (2007) Nature Genetics *Albert et al. (2007) Nature Methods Emrich et al., 2007 Genome Research Barbazuk et al., 2007, Plant Journal* *open access articles

Sequence Capture from eQTL Interval

- **1.5 Mb** eQTL interval contains:
 - 350 non-TE genes predicted using FGENESH and repeat filtered w/ ISU Cereal Repeat DB:
 - 806,653 bp repeat masked
 - 738,611 bp unmasked

- 60,000 454 reads (~10% "on-target" wo/ considering repeats)
 - 525 SNPs discovered in non-repetitive sequences
- Validation necessary (NIPs, Emrich et al., Genetics 2006)

Validated and Mapped ~1,000/1,359 (~74%) Putative 454-SNPs via Sequenom MassARRAY

- Sequenom® software used to design PCR & extend primers for 1,359 putative SNPs
- 1,359 SNPs formed 48 "plexes"
- (ave. 28 SNPs/plex, now 36)

Sarah Hargreaves Debbie Chen

<u>Throughput and cost:</u> 36,864 data points possible per day at a supply cost of \$0.05-0.10 per data point.

Take home-messages

- Sequence capture works in complex crop plant genomes
 - Efficiency depends on multiple factors, some of which are still under investigation
- CGH can help to optimize capture design in species with high levels of genomic variation

Collaborators

- •Brad Barbazuk (Univ of FL)
- Rhonda DeCook (Statistics, Univ of IA)
- ·Jeff Jeddeloh et al. (Roche/Nimblegen)
- •Abraham Korol (Univ Haifa)
- Dan Nettleton (Statistics, ISU)
- •Nathan Springer (Univ of MN)
- •Qixin Sun & Zhiyong Liu (China Agriculture Univ)

The Maize Genome Sequencing Project, Rick Wilson, Pl

For more details and discussion, please visit Poster 327

	Schnable Lab	
C PSI NSF-PG ISU Blas	stn NYT Lab Preview PubMed Schnable Lab Metafilter MAGI ISU-Phone Weather FastLane	Abebooks Amazon
SCHNABLE LA	АВ	IOWA STATE UNIVERSITY
Home Research Pers	connel Collaborators Education Resources chnable Lab Plant Genomics Iowa State University	Contact
Projects MAGI (Maize Assembled Genomic Island)		
MaGMaP (Maize Genetic Mapping) Mapped IDPs Oklap ISU EST Order ISU ESTs SAM (Shoot Apical Meristern)		
MADI (MicroArray Data Interface)		
Center for Plant Genomics	Roy J. Carver Co-Laboratory	
Lab Publications		
How To Find Us		
Lab Photo Gallery		
Lab Intranet		
	© Copyright 2001-2005 Schnable Lab. All Rights Reserved.	

www.schnablelab.plantgenomics.edu

Kai Ying (应开)

Nathan Springer

"Application of NimbleGen Sequence Capture to Complex Plant Genomes" Roche Nimblegen Workshop: Tuesday, 6:10 pm - 8:20 pm